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Abstract 
Modern portfolio theory was pioneered by Markowitz in 1952 and led to him             
being awarded the Nobel Prize in Economics in 1990. The original essay on             
portfolio selection [7] has since inspired a multitude of researchers and           
analysts to develop theories on financial modelling and risk management.          
Seeking similar inspiration for future work, this report aims to study the            
classical portfolio optimization technique introduced by Markowitz and to         
apply it to real world data. 

 

1 Portfolio Selection Problem 
Borrowing the description from Boyd & Vandenberghe’s textbook [1], we consider the classical portfolio              
problem with ​n assets or stocks held over a period of time. Let ​w​i ​denote the amount of asset ​i ​held                     
throughout the period, with ​w​i in dollars, at the price at the beginning of the period. A normal long                   
position in asset ​i corresponds to ​w​i ​> 0; a short position in asset ​i (​i.e.​, the obligation to buy the asset at                       
the end of the period) corresponds to ​w​i ​< 0. We let ​p​i denote the relative price change of asset ​i over the                       
period, ​i.e.​, its change in price over the period divided by its price at the beginning of the period. The                    
overall return on the portfolio is ​r = p​T w (given in dollars). The optimization variable is the portfolio                   
vector ​w​ ∈ R​n​. 
 
A wide variety of constraints on the portfolio can be considered. The simplest set of constraints is that ​w​i                   
≥ 0 (​i.e.​, no short positions) and 1​T ​w = ​B (​i.e.​, the total budget to be invested is ​B​, which is often taken to                         
be one). 
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We take a stochastic model for price changes: ​p ∈ R​n is a random vector, with known mean ​μ and                    
covariance Σ. Therefore with portfolio ​w ∈ R​n​, the return ​r is a (scalar) random variable with mean ​μ​T w                    
and variance ​w​T ​Σ​w​. The choice of portfolio ​w involves a trade-off between the mean of the return, and its                    
variance. 
 
The classical portfolio optimization problem is the quadratic program 

minimize w​T​ ​Σ​w 
subject to μ​T​ w​ ≥ ​r​min 

1​T​ ​w​ = 1,   ​w​ � 0, 
where ​w​, the portfolio, is the variable. Here we find the portfolio that minimizes the return variance                 
(which is associated with the risk of the portfolio) subject to achieving a minimum acceptable mean return                 
r​min​, and satisfying the portfolio budget and no-shorting constraints.  
 
Many variations of the original problem constraints are possible and are solved in Section 3 with                
synthetically generated data. In Section 4, we attempt to solve the problem for real world data. Our                 
solutions are built with CVXPY, a Python-embedded modeling language for convex optimization            
problems. 

2 Convexity Analysis 
A convex optimization problem is the optimization of a convex function over a convex set. Such                
problems and the concept of convexity itself are an important topic in economics and finance- the                
behaviour of a rational agent can be modelled as maximizing an objective function, called the utility                
function, under various constraints. Henrotte & Lebret [3] described risk aversion as the maximization of               
a concave utility function, ​i.e. the willingness to pay to avoid a fair game. Hence, if we can model                   
optimization problems in Economics and Finance as generic convex optimization problems, we can use              
various well developed techniques to solve these problems. 
 
The quadratic optimization problem or quadratic program (QP) is a convex optimization problem where              
the objective function is (convex) quadratic and the constraint functions are affine. A typical QP can be                 
expressed in the form 

minimize (1/2) ​x​T​ Px​ + ​q​T​ x​ + ​r 
subject to G x ​�​ h 

A x ​=​ b, 
where ​P​ is a symmetric positive semidefinite matrix, ​G ​∈​ ​R​m×n​, and​ A ​∈ ​R​p×n​.  
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The portfolio selection problem described in Section 1 can be solved using techniques to solve a generic                 
QP as long as the covariance matrix Σ is symmetric positive semidefinite, since the objective is (convex)                 
quadratic and the constraints are affine. 
 

3 Synthetic Examples 
Our goal is to demonstrate how to do portfolio optimization with CVXPY on synthetic data. We first                 
generate the values of the mean price change ​μ and the covariance Σ over an arbitrary period for ​n assets                    
(we take ​n = 10) using a randomizer. We ensure that Σ is symmetric positive semidefinite to obtain a                   
convex objective function.  
 
In the following sections, we describe the experiments we conducted for several variants of the classical                
Markowitz problem. We made use of the code provided in [2] as a starting point. The appendix shows the                   
values of ​μ​ and Σ used for all experiments. 

3.1 Using a Risk Aversion Parameter 
By introducing a new parameter γ > 0 (called the ​risk aversion parameter​) the classical portfolio                
optimization problem described in Section 1 can be reformulated as  

maximize μ​T​ w​ - γ​w​T​ ​Σ​w 
subject to 1​T​ ​w​ = 1,   ​w​ � 0, 

The objective ​μ​T​ w​ - γ​w​T​ ​Σ​w​ is the ​risk-adjusted return​. Varying γ gives the optimal risk-return trade-off. 
 
We experimented with 100 different values of γ between 10​-2 to 10​3​, spaced evenly on a log scale. We                   
solved the corresponding 100 QPs using CVXPY and plotted the optimal risk-return trade-off for the 10                
assets in Figure 1. We also selected two values of γ (γ = 0.29 and γ = 1.05) on the trade-off curve and                       
plotted their return distributions in Figure 2. 
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Figure 1: ​Optimal risk-return trade-off for 10 assets. The green curve shows the trade-off for different                
values of γ. The 10 red markers are the coordinates denoting the (standard deviation, return) pair for each                  
asset. 
 

 
 
 

Figure 2: ​Return distributions for two risk aversion values marked on the trade-off curve. ​The               
probability of a loss is almost 0 for the low risk value and above 0 for the high risk value. (Higher γ                      
implies lower risk.) 
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3.2 Using Leverage Limits 
Leverage is the investment strategy of using borrowed money, and can be modelled as the L1-norm of the                  
allocation vector ​w​, ​i.e. || ​w ​||​1​. Building further on the problem defined in Section 3.1, we replaced the                   
constraint of restricting ourselves to a long-only portfolio (​w � 0) with a new constraint on ​w called the                   
leverage limit, defined as || ​w ​||​1 ≤ ​L​max​. We solved the QP for leverage limits of 1, 2 and 4, and plotted the                        
optimal risk-return trade-off curves in Figure 3. 
 
Figure 3: ​Trade-off curves for three values of ​L​max​. Allowing higher leverage leads to increased returns                
and allows greater risk. 
 

 

 

3.3 Bounding Risk 
To analyze how a portfolio behaves when putting a bound on leverage, Figure 4 displays the amount of                  
each asset held in each portfolio as a bar graph at the points on each trade-off curve where the risk ​w​T ​Σ​w                      
= 2. We solved the following QP 

maximize μ​T​ w 
subject to 1​T​ ​w​ = 1 

|| ​w ​||​1​ ≤ ​L​max 
w​T​ ​Σ​w ​≤ 2 
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Figure 4: ​Amount of each asset held in each portfolio. Note that blue, green and red bars correspond to                   
L​max taking the values 1, 2 and 4 respectively. We saw that higher leverage portfolios had a greater                  
tendency to take up short positions (​i.e.​ negative holdings) owing to higher tolerance for risk. 
 

 

4 Real World Example 
In this section, we apply the classical portfolio optimization technique on real world data. For our                
analysis, we selected five well known stocks (Apple, IBM, Google, Microsoft and Qualcomm) and a fixed                
interest rate as the six assets for which we want to optimize our portfolio allocation. We obtained the                  
closing stock prices of the five stocks from January 2000 to January 2014 (Google’s price is NaN till it                   
was publically listed), and assigned a fixed value of 0.0025 to the interest rate (which we assume is a                   
position with zero risk). 

4.1 Estimating Mean Return and Covariance 
To model the problem as a QP, we computed the mean return and covariance of the assets over a specific                    
time period (we chose 20 days). The estimation of these parameters from historical prices is a popular                 
topic in financial modelling, with many advanced techniques proposed for doing so. In our analysis, we                
chose a simple method where we first computed the shifted return of the assets over the time period                  
specified as ​shifted_return = ​price​[​current_date​]/​price​[​current_date + ​time_period​] - 1. Figure 5 shows            
the stock prices and shifted returns for each stock. We then used the exponentially weighted moving                
average, standard deviation and covariance functions provided by Pandas, a data analysis library for              
Python to compute the required parameters. 
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Figure 5: ​Stock prices and shifted returns for the five stocks. 

 
 

However, the covariance matrix yielded by this method was not guaranteed to be symmetric positive               
semidefinite. To ensure problem feasibility, we replaced the covariance matrix by the nearest positive              
definite matrix using the technique proposed by Higham [4]. The computation of the nearest symmetric               
positive definite matrix is another well-studied topic in linear algebra [4] and financial modelling [5]. 
 

4.2 Solving the problem 
Given the mean return ​μ and the covariance Σ, we solved the QP described in Section 1 to obtain the                    
optimal portfolio allocation for six assets. Note that we restricted ourselves to a long-only portfolio with                
an explicit lower bound on return ​r​min = 0.02. We solved a series of QPs, starting from January 3rd, 2006                    
and re-optimizing every 20 days.  
 
For each time period, we obtained the optimal portfolio allocation vectors. Figure 6 shows optimal               
distributions for the year 2013, while Figure 7 plots the portfolio return versus time. We used code from                  
[6] to plot our results. 
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Figure 6: ​Optimal portfolio allocation for the year 2013. 
 

 
 
Figure 7: ​Portfolio return versus time. ​The approach yielded a portfolio that doubled in return in the                 
specified time period. (However, our analysis was biased by deliberately picking stocks that have done               
well over the past years!) 
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Appendix 
 
Table 1: ​Value for mean price change of 10 assets.  
 

1.62 0.61 0.53 1.07 0.87 2.30 1.74 0.76 0.32 0.25 

 
Table 2: ​Value of covariance matrix of 10 assets.  
 

8.30 -4.43 -2.48 -3.12 1.19 2.42 -0.14 -2.49 -3.36 0.43 

-4.43 10.00 3.98 0.03 -1.86 2.97 2.74 -1.30 0.90 -3.94 

-2.48 3.98 3.88 0.84 0.85 -0.75 0.45 -2.77 -0.51 -2.32 

-3.12 0.03 0.84 5.89 0.04 -2.84 0.76 2.73 -1.61 1.27 

1.19 -1.86 0.85 0.04 4.35 -2.81 -0.36 0.06 -0.17 0.53 

2.42 2.97 -0.75 -2.84 -2.81 6.57 1.21 -1.09 -0.50 -2.13 

-0.14 2.74 0.45 0.76 -0.36 1.21 4.52 1.68 0.77 -2.92 

-2.49 -1.30 -2.77 2.73 0.06 -1.09 1.68 11.00 4.91 0.22 

-3.36 0.90 -0.51 -1.61 -0.17 -0.50 0.77 4.91 8.22 -1.74 

0.43 -3.94 -2.32 1.27 0.53 -2.13 -2.92 0.22 -1.74 6.63 
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